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Abstract: The present study was attempted to predict the performance accuracy of datasets of metal(loid) contaminated 
and uncontaminated soil and uptake capability in weeds through machine learning (ML) classification models by using WEKA 
tool, version 3.8.5. Different ML algorithm models along with 4 attributes viz. Pb in soil (SPb), Cd in soil (SCd), As in soil 
(SAs) and effect (normal as N and abnormal as A content) as well as Pb accumulation in plant (PlPb), Cd accumulation in 
plant (PlCd), As accumulation in plant (PlAs) and effect (N and A content) separately predicted to know overall performance 
accuracy as per 10-fold cross validation. In the present study, PRC values were recorded the ranged between 87% to 100% for 
the prediction of metal(loid) content performance accuracy in the soil while PRC values were recorded the ranged between 
73% to 96% for the prediction of metal(loid) accumulation performance accuracy in the weeds. It is concluded that ML 
algorithms performed accurately from the dataset and obtained rich information with statistical validation. The future study in 
WEKA tool can easily be analysed with more dataset to predict classifier accuracy related to metal(loid) phytoremediation 
efficiency through weeds. 

Keywords: Machine learning algorithm, Model classifier accuracy, WEKA tool, Predictive soil adsorption, 
Predictive plant accumulation, Metals and metalloids 
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1. INTRODUCTION 

The municipal solid wastes (MSW) comprise different wastes viz. raw vegetable and cooked food 
wastes, garden wastes, papers, woods, plastics, construction and demolition wastes, glass, ceramics, 
electrical and electronic wastes, etc. [1] in which few are biodegradables, but majority wastes are non-
biodegradable. In the municipality area, the specified barren land is used to dump MSW, which could 
produce environmental pollution [2,3]. The leachate runoff from open dumping sites showed dominant 
source of metal(loids) in the surface water and underground water, soil, and finally uptake by plants [4-
14]. 

Several investigations have been carried out especially in and near the solid wastes dumping sites in 
India and abroad [15-19]. On the other hand, Mandal et al. [20] observed that soil is contaminated due 
to unsafe disposal of large quantity of arsenic contaminated sludge, which is generated from arsenic 
removal water treatment plant and arsenic could be adsorbed through waste candles containing arsenic. 

In the technique of phytoremediation, several studies have been reported nationally and internationally 
that some weeds are also able to extract the heavy metals from the soil and could remediate easily from 
the medium both in situ as well as ex situ conditions [21-29]. Shahid et al. [30]) revealed that metals or 
metalloid have tendency to accumulate and translocated to roots and aerial parts viz. stem, leaves, etc. 
of plant species. It was reported that root is the main target to accumulate but it translocated to the 
different parts of the shoot of plant species [31]. Biswas et al. [19] observed two weed species (Lantana 
camara and Sida sp.) accumulated Pb and Cd into the leaves as hyper-accumulator and could be 
efficiently used for phyto-remediation for these toxic elements from the soil around solid waste 
dumping ground of Berhampur Municipality, West Bengal, India. 

Interestingly, recent research revealed that big data mining is demanding research in which the 
endeavour from dataset to valuable information through statistical interpretation. It can easily be 
accomplished through ML models or artificial intelligence (AI) algorithms, which is predicted the 
performance accuracy of the dataset [32,33]. On the other hand, several big data analysis on finance, 
agriculture, biomedical science, bio-science, etc. well established by many researchers [33-38], the data 
analysis by using ML models to establish limits in the classification of hyperaccumulator plants growing 
on different metals contaminated soils has already been achieved to know plant mineral composition 
[38] and recently many investigations are showing interest on the big data analysis by using ML and AI 
classification algorithms to obtain the accuracy in the big dataset [34-38].  

The objective of the present study was to predict the performance accuracy of datasets of 
uncontaminated and contaminated soil and uptake potential in weeds through machine learning (ML) 
classification models in the WEKA (Waikato Environment for Knowledge Analysis) tool (version 
3.8.5). 
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2. MATERIALS AND METHODS 

In the present study, we used data mining tool namely WEKA (Waikato Environment for Knowledge 
Analysis) tool (version, 3.8.5) developed by Frank et al. [39] in which performance accuracy could be 
achieved through ML modelling algorithms. The WEKA explorer was developed with data pre-
processing, classification, regression, and association rules [40]. In pre-processing, all the data were 
made through unsupervised instance and 10-fold cross validation data was used.   

The predictive accuracy of dataset on normal and abnormal metal(loid) content in soil and maximum 
accumulation in the weeds of MSW dumping ground through ML modelling algorithms especially 
different classifiers viz. BayesNet (BN), NaiveBayes (NB), logistic regression (LR), Lazy.KStar (K*), 
decision tree (DT) J48, Random forest (RF), Random tree (RT) and Class implementing minimal cost-
complexity pruning (CART) along with 4 attributes viz. Pb in soil (SPb), Cd in soil (SCd), As in soil 
(SAs) and effect (normal as N and abnormal as A content) as well as Pb accumulation in plant (PlPb), 
Cd accumulation in plant (PlCd), As accumulation in plant (PlAs) and effect (N and A content) 
separately studied from dataset to predict the overall performance accuracy from the dataset of our 
earlier study of Biswas et al. [19].   

The performance accuracy of above-mentioned ML model classifications related to correctly and 
incorrectly classified instances, Kappa statistics (KS), mean absolute error (MAE) and root mean 
squared error (RMSE) were studied for 10-fold cross validation test as per earlier study by Talapatra et 
al. [37] and Bhattacharya et al. [41]. As per Bouckaert et al. [42], the results for each algorithm model 
summary were retrieved from WEKA tool. The prediction accuracy of studied ML models as per 10-
fold cross validation test was retrieved from summary results and the statistical parameters such as true 
positive (TP), false positive (FP), Matthew’s correlation coefficient (MCC), receiver operating 
characteristic (ROC) and Precision-recall curve (PRC), respectively were recorded. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Journal Of Electronics Information Technology Science And Management

VOLUME 12, ISSUE 11, 2022

ISSN NO : 0258-7982

PAGE NO: 180



3. RESULTS AND DISCUSSION 

In the pre-processing step, graphical representation of statistical data of different attributes (SPb, SCd, 
SAs and effect (N and A) (Fig 1) as well as (PlPb, PlCd, PlAs and effect (N and A) (Fig 2) were 
obtained. It is not always possible to identify that which part of plants accumulate metal(loids) and these 
problems can easily be explained by resorting to big data mining, which is the abstraction of implicit, 
previously unknown, and potentially useful information in data [40]. Generally, ML is used to extract 
information from raw data of metal(loids) adsorbed soil and accumulated plants [38]. The process is 
based on abstraction in which data were collected, with all their defects, and the underlying structure is 
represented [40]. 

In Fig 1, visual qualitative and quantitative understanding of the distribution class (class effect N as 
blue coloured and A as red coloured under nominal) in which SPb attribute was obtained ranged 
between 3.79-26.05 for N category and 26.05-48.32 for A category (11 nos. in each),  SCd attribute was 
obtained ranged between 1.59-3.40 (18 nos.), 3.40-5.22 (2 nos.) and 5.22-7.03 (2 nos.), SAs was found 
ranged between 2.39-4.54 (5 nos.), 4.54-6.68 (9 nos.) and 6.68-8.83 (8 nos.) and effect attribute viz. N 
and A category were obtained 11 nos. in each case.  

In Fig 2, visual qualitative and quantitative understanding of the distribution class (class effect N as 
blue coloured and A as red coloured under nominal) in which PlPb attribute was obtained ranged 
between 0.19-9.68 (12 nos.), 9.68-19.18 (6 nos.) and 19.18-28.67(4 nos.), PlCd attribute was obtained 
ranged between 0.38-1.01 (16 nos.), 1.01-1.64 (3 nos.) and 1.64-2.27 (3 nos.), SAs was found ranged 
between 0.35-1.38 (9 nos.), 1.38-2.40 (6 nos.) and 2.40-3.43 (7 nos.) and effect attribute viz. N and A 
category were obtained 11 nos. in each case.  

 

 

Figure 1: Representation of different attributes of soil after pre-processing in WEKA tool 
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Figure 2: Representation of different attributes of weeds after pre-processing in WEKA tool 

Table 1 describes the summary results of studied ML algorithm models such as BayesNet (BN), 
NaiveBayes (NB), logistic regression (LR), Lazy.KStar (K*), decision tree (DT) J48, Random forest 
(RF), Random tree (RT) and Class implementing minimal cost-complexity pruning (CART) related to 
4 attributes of soil. The performance of model accuracy of above-mentioned ML algorithm 
classifications as per correctly and incorrectly classified instances, Kappa (K) statistics, mean absolute 
error (MAE) and root mean squared error (RMSE) were studied as per 10-fold cross validation test. In 
the case of algorithm model classification, the higher values were observed in BN, NB, LgR, RF and 
CART (100.00%) followed by J48 (95.45%), and lower value in RT (90.91%) as per 10-fold cross 
validation test. 

Table 1: Results on different classified instances and statistical values for different 
algorithm models for soil 

Classifier 
model 

Correctly classified 
instances 

Incorrectly 
classified 
instances 

KS MAE RMSE 

BN 100.0 0.0 1 0.03 0.07 
NB 100.0 0.0 1 0.00 0.00 
LgR 100.0 0.0 1 0.00 0.00 
K* 100.0 0.0 1 0.0005 0.002 
J48 95.45 4.54 0.91 0.04 0.21 
RF 100.0 0.0 1 0.03 0.06 
RT 90.91 9.09 0.82 0.09 0.30 
CART 100.0 0.0 1 0.03 0.06 

BN = Bayes Network; NB = NaiveBayes; LgR = Logistic Regression; K* = Lazy.KStar; J48 = Pruned 
and unpruned decision tree C4; RF = Random Forest; RT = Random tree; CART = Class 

implementing minimal cost-complexity pruning; KS = Kappa Statistics; MAE = Mean Absolute 
Error; RMSE = Root Mean Squared Error 

 
Table 2 describes the summary results of studied ML algorithm models such as BayesNet (BN), 
NaiveBayes (NB), logistic regression (LR), Lazy.KStar (K*), decision tree (DT) J48, Random forest 
(RF), Random tree (RT) and Class implementing minimal cost-complexity pruning (CART) related to 
4 attributes of weeds. The performance of model accuracy of above-mentioned ML algorithm 
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classifications as per correctly and incorrectly classified instances, Kappa (K) statistics, mean absolute 
error (MAE) and root mean squared error (RMSE) were studied as per 10-fold cross validation test. In 
the case of algorithm model classification, the higher values were observed in K* (95.45%) followed 
by LogR (86.37%), RF (86.36%), NB and RT (81.82%), J48 and CART (72.72%) and lower value in 
BN (68.18%) as per 10-fold cross validation test. 

Table 2: Results on different classified instances and statistical values for different 
algorithm models for weeds 

Classifier 
model 

Correctly classified 
instances 

Incorrectly 
classified 
instances 

KS MAE RMSE 

BN 68.18 31.82 0.36 0.38 0.48 
NB 81.82 18.18 0.63 0.17 0.36 
LgR 86.37 13.64 0.73 0.17 0.34 
K* 95.45 4.54 0.91 0.07 0.22 
J48 72.72 27.27 0.45 0.32 0.48 
RF 86.36 16.64 0.73 0.24 0.24 
RT 81.82 18.18 0.64 0.18 0.43 
CART 72.72 27.27 0.45 0.32 0.47 

BN = Bayes Network; NB = NaiveBayes; LgR = Logistic Regression; K* = Lazy.KStar; J48 = Pruned 
and unpruned decision tree C4; LMT = Logistic Model Tree; RF = Random Forest; RT = Random 

tree; CART = Class implementing minimal cost-complexity pruning; KS = Kappa Statistics; MAE = 
Mean Absolute Error; RMSE = Root Mean Squared Error 

Table 3 describes the representation of the detailed accuracy of studied models for the studied dataset. 
In case of the accuracy of a class of values of TP, FP, precision, MCC, ROC and PRC, the better 
performances were observed in BN, NB, LgR, RF and CART followed by J48 and RT for soil. In the 
present study, PRC values were recorded the ranged between 87% to 100% for the prediction of 
metal(loid) content performance accuracy in the soil. The ROC curve is depicted (Figs 3, 4 and 5). 

Table 3: Statistical data for prediction accuracy of studied algorithms for soil 

Classifier 
model 

 TP 
Rate 

FP 
Rate 

Precision Recall F-
Measure 

MCC ROC 
area 

PRC 
area 

BN N 1.0 0.0 1.0 1.0 1.0 1.0 1.0 1.0 
A 1.0 0.0 1.0 1.0 1.0 1.0 1.0 1.0 

NB N 1.0 0.0 1.0 1.0 1.0 1.0 1.0 1.0 
A 1.0 0.0 1.0 1.0 1.0 1.0 1.0 1.0 

LgR N 1.0 0.0 1.0 1.0 1.0 1.0 1.0 1.0 
A 1.0 0.0 1.0 1.0 1.0 1.0 1.0 1.0 

K* N 1.0 0.0 1.0 1.0 1.0 1.0 1.0 1.0 
A 1.0 0.0 1.0 1.0 1.0 1.0 1.0 1.0 

J48 N 0.91 0.0 1.0 0.91 0.95 0.91 0.95 0.95 
A 1.0 0.09 0.92 1.0 0.96 0.91 0.95 0.92 

RF N 1.0 0.0 1.0 1.0 1.0 1.0 1.0 1.0 
A 1.0 0.0 1.0 1.0 1.0 1.0 1.0 1.0 

RT N 0.91 0.09 0.91 0.91 0.91 0.82 0.91 0.87 
A 0.91 0.09 0.91 0.91 0.91 0.82 0.91 0.87 

CART N 1.0 0.0 1.0 1.0 1.0 1.0 1.0 1.0 
A 1.0 0.0 1.0 1.0 1.0 1.0 1.0 1.0 

BN = Bayes Network; NB = NaiveBayes; LgR = Logistic Regression; K* = Lazy.KStar; J48 = Pruned and 
unpruned decision tree C4; LMT = Logistic Model Tree; RF = Random Forest; RT = Random tree; CART = 

Class implementing minimal cost-complexity pruning; TP = True positive; FP = False positive; MCC = 
Matthew’s correlation coefficient; ROC = Receiver operating characteristic; PRC = Precision-recall curve 
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Figure 3: Area under ROC (=1) plot for BN, NB, LgR, K*, RF and CART algorithms of N and A 
effect for soil 

 

Figure 4: Area under ROC (=0.95) plot for J48 algorithm of N and A effect for soil 

 

Figure 5: Area under ROC (=0.91) plot for RT algorithm of N and A effect for soil 

Table 4 describes the representation of the detailed accuracy of studied models for the studied dataset. 
In case of the accuracy of a class of values of TP, FP, precision, MCC, ROC and PRC, the better 
performances were observed in BN, NB, LgR, RF and CART followed by J48 and RT for soil. In the 
present study, PRC values were recorded the ranged between 73% to 96% for the prediction of 
metal(loid) accumulation performance accuracy in the weeds. The ROC curve is depicted (Figs 6, 7, 8 
and 9). 
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Table 4: Statistical data for prediction accuracy of studied algorithms for soil 

Classifier 
model 

 TP 
Rate 

FP 
Rate 

Precision Recall F-
Measure 

MCC ROC 
area 

PRC 
area 

BN N 0.73    0.36    0.67       0.73     0.70       0.36    0.76     0.80 
A 0.64    0.27    0.70       0.64     0.67       0.36    0.76     0.69 

NB N 0.91    0.27    0.77       0.91     0.83       0.65    0.94     0.96 
A 0.73    0.09    0.89       0.73     0.80       0.65    0.94     0.92 

LgR N 0.82    0.09    0.90       0.82    0.86       0.73    0.89     0.94 
A 0.91    0.18    0.83       0.91     0.87       0.73    0.90     0.80 

K* N 0.91    0.00    1.00       0.91     0.95       0.91    0.92     0.96 
A 1.00    0.09    0.92       1.00     0.96       0.91    0.92     0.85 

J48 N 0.64    0.18    0.78       0.64     0.70       0.46    0.72     0.68 
A 0.82    0.36    0.69       0.82     0.75       0.46    0.72     0.73 

RF N 0.91    0.18    0.83       0.91     0.87       0.73    0.89     0.93 
A 0.82    0.09    0.90       0.82     0.86       0.73    0.89     0.79 

RT N 0.91    0.27    0.77       0.91     0.83       0.65    0.82     0.74 
A 0.73    0.09    0.89       0.73     0.80       0.65    0.82     0.78 

CART N 0.64    0.18    0.78       0.64     0.70       0.46    0.76     0.74 
A 0.82    0.36    0.69       0.82     0.75       0.46    0.76     0.75 

BN = Bayes Network; NB = NaiveBayes; LgR = Logistic Regression; K* = Lazy.KStar; J48 = Pruned and 
unpruned decision tree C4; LMT = Logistic Model Tree; RF = Random Forest; RT = Random tree; CART = 

Class implementing minimal cost-complexity pruning; TP = True positive; FP = False positive; MCC = 
Matthew’s correlation coefficient; ROC = Receiver operating characteristic; PRC = Precision-recall curve 

 

Figure 6: Area under ROC (=0.94) plot for NB algorithm of N and A effect for weeds 

 

Figure 7: Area under ROC (=0.92) plot for K* algorithm of N and A effect for weeds 
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Figure 8: Area under ROC (=0.89) plot for RF algorithm of N and A effect for weeds 

 

Figure 9: Area under ROC (=0.82) plot for RT algorithm of N and A effect for weeds 

Several studies on ML algorithms have been carried out on biological science, [34-36,38,41] etc. but 
the analysis of dataset through ML modelling algorithm for soil adsorption and plant accumulation of 
metal(loids) to predict the classifier performance accuracy by using WEKA tool is the first-time 
endeavour. 

4. CONCLUSION 

In the present study, PRC values were recorded the ranged between 87% to 100% for the prediction of 
metal(loids) content performance accuracy in the soil while PRC values were recorded the ranged 
between 73% to 96% for the prediction of metal(loids) accumulation performance accuracy in the 
weeds. In conclusion, ML algorithms performed accurately from the dataset and obtained rich 
information with statistical validation and future study in WEKA tool can easily be analysed with more 
dataset to predict classifier accuracy related to metal(loid) phytoremediation through weeds. 
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