
INTELLIGENT TECHNIQUE FOR MULTI USER OFFLOADING IN

MOBILE EDGE COMPUTING

Isha Bhargav1 Raj Kumari2

University institute of engineering and technology, Panjab University
University institute of engineering and technology, Panjab University

ishabhargav.uiet@gmail.com
rajkumari@pu.ac.in

ABSTRACT

Energy harvesting and mobile edge computing, both have the potential to increase the longevity of wireless data. In
this paper, several mobile users are taken into account in a MEC setup which generates stochastic task arrivals and
wireless channels, which are designed to jointly optimize latency and energy-efficient communications Computation
is done, where the deep reinforcement learning-based dynamic algorithm decides whether to take offloading enabled,
which is either computing in the MEC server, or partially computing to local devices, for each unit of time. For
continuous action space, a deep deterministic policy gradient approach is used, which learn effective computation
offloading policies individually for each mobile user. Hence, assign powers for both local execution and task
offloading from the learned policy This study confirms that the suggested dynamic algorithm achieves the expected
performance according to the performance evaluation using data-intensive simulations as compared to the traditional
deep reinforcement learning algorithm.

Keywords: Deep reinforcement learning, extended Deep Q-learning for offloading decision, mobile edge computing

1. Introduction

As mobile user equipment (UEs) like smartphones, tablets, and Internet of Things (IoT) devices become significantly
more popular, new mobile apps like navigation, facial recognition, and interactive online gaming are continually
appearing. But these mobile devices have a limited amount of computation capacity and are energy-hungry
applications, which restricts them from providing quality of service(QoS)[1].In order to increase service availability,
speed, and reliability, mobile cloud computing(MCC) is introduced which facilitates compute and storage transfer
from resource-constrained mobile devices to cloud servers. Additionally, it can lower the device's energy use without
affecting how well applications run[2].MCC provides hardware as well as software services to run this computation-
intensive application on the cloud server, this reduces cost and provides more scalability.

With recent advancements in IoT are resulting in more demands that are unable to meet by MCC, few requirements
are geo-distribution, low latency, position awareness, and mobility support[3]. Traditional cloud computing solutions
let UEs use the tremendous computational capacity in distant public clouds, but they may result in lengthy delays
because of data interchange across wide area networks (WANs). While the wireless spectrum resource has been fully
utilized in MCC through the use of techniques like Ultra Dense Networks (UDN) and Dynamic Spectrum Access
(DSA), the big data traffic brought on by computationally intensive tasks grows exponentially and frequently goes
unaddressed due to a lack of an appropriate resource assignment scheme to handle the massive service traffic[4].
Cloud computing may be used for computation-intensive services to compute activities on the cloud but at the expense
of transmission and information leakage. By assisting nearby computational access points (CAPs) in networks with

ISSN NO : 0258-7982

PAGE NO: 76

Journal Of Electronics Information Technology Science And Management

 VOLUME 12, ISSUE 12, 2022

hp
Textbox

computing chores, mobile edge computing (MEC) has been offered as a solution to this issue. MEC may drastically
reduce latency and energy usage for both communication and calculation[5].

MEC is a novel paradigm in Cloud radio access networks that can increase the compute capacity at the edge of mobile
networks by adding high-performance servers[6].MEC is the extended cloud that is positioned at the periphery of
mobile networks, removing the need to transfer resource-intensive computing and storage operations from mobile
devices to the network's core (the centralised cloud data centre)[7]. Offloading tasks eases the computational load on
mobile devices and extends battery life. By using machine learning and deep learning techniques a system is trained
to automatically make decisions on whether to compute tasks locally or server[8]. It is important to have effective
resource management, The goal of a MEC system is to handle as many compute offloading requests from various
MDs as is feasible given the system's constrained processing and radio capabilities. The system might result in sluggish
reaction times and excessive power consumption if resource allocations are not coordinated well, which would then
have an impact on the performance of the overall computation offloading.

This proposes an intelligent offloading decision for handling the optimization problem of computation offloading and
resource allocation for a dynamic and continuous MEC environment.

Key contributions can be summarized below

 A multi-user system is considered, where each user learns a dynamic continuous offloading policy with the
help of random task arrivals and time-varying wireless channels. The main objective is to optimize the cost
sum with respect to power consumption and delay.

 An approach is adopted in which each user will independently develop a decentralized dynamic computation
offloading policy, that determines an action, i.e., allocates powers for both local execution and computation
offloading, based on its observations of the environment.

 Simulations are performed and compared with baseline strategy, and policy is learned according to DDPG.
An offloading decision is made which determines whether to fully offload the data or partially offload the
data to the MEC server or to a local device.

2. Related works

The advantages of computational offloading in Mobile Cloud Computing (MCC), such as energy savings and
increased mobile application performance, have drawn attention[9]. But more advancements in technology have led
to problems in cloud servers to provide efficient services for computation-intensive tasks, which is overcome using
mobile edge computing. [4]have proposed energy-efficient computation offloading, which minimizes energy for all
users using mixed integer non-linear programming problem (MINLP) and provides a value iteration based
Reinforcement Learning (RL) technique, known as Q-Learning, to ascertain the ideal plan of joint computation
offloading and resource allocation. In [5] a multiuser mobile edge computing (MEC) network enables users to offload
some of their duties to several computational access points (CAPs). That takes into account real-world scenarios where
task characteristics and processing capacity at the CAPs may change over time, posing an issue with dynamic
offloading. Which first frame this issue as a Markov decision process (MDP) and then introduces the state and action
spaces to address it. The users may dynamically fine-tune the offloading proportion in order to assure the system
performance as evaluated by the latency and energy consumption. They also build a unique offloading approach based
on the deep Q network (DQN). [10]have taken into account two user MEC networks, which have a series of tasks to
execute, where the result of the task at WD1 is needed to compute an intermediate task at WD2. A mixed integer
optimization problem is introduced to reduce the weighted total of the WDs' energy consumption and task execution
time. This is done because of the inter-user task interdependence. Each WD's transmission power, local CPU
frequencies, and workload offloading choices are cooperatively optimised. For multi-access edge computing (MEC)
networks, [11] have novel deep imitation learning (DIL) driven edge-cloud computation offloading system has been
developed. This approach uses optimal behavioral cloning to minimize the offloading cost of a time-varying

ISSN NO : 0258-7982

PAGE NO: 77

Journal Of Electronics Information Technology Science And Management

 VOLUME 12, ISSUE 12, 2022

environment. Supervised learning from demonstrations to observation is carried out through behavioural cloning. For
the intelligent framework, they have created a deep imitation learning-based offloading model, which is initially
trained offline using learning examples. The model generates near-optimal online offloading choices with a very
quick inference speed after a simple and quick implementation.[12] Analyze a combined resource allocation and
computation offloading problem using multiple user equipment (UE) that is EH device and rechargeable battery
equipped. The goal of the task is to reduce system energy usage while ultimately fulfilling the UE's latency limitation.
there are three steps used for the formulation of an intractable mixed integer nonlinear programming (MINLP).
Which initially uses a deep reinforcement learning framework called Deep Deterministic Policy Gradient to get
continuous power allocation (DDPG). After that, channel assignment is determined using the Lagrangian function and
the Karush-Kuhn-Tucher (KKT) condition. Finally, we change the DDPG framework's state, action, and reward.
According to the simulation results, our suggested method discovers offloading decisions and power allocation with
the lowest energy usage. [13] investigate partial computation offloading by jointly maximising the smart mobile
device's (SMD) compute speed, transmit power, and offloading ratio with two system design goals: minimising the
SMD's energy consumption (ECM) and minimising the delay of the application's execution (LM). Both the ECM
issue and the LM problem are considered nonconvex problems, taking into account the scenario where the SMD is
serviced by a single cloud server. A variable substitution approach is used to recast the ECM issue as a convex one
and find the best solution. A locally optimum solution using the univariate search technique is suggested to handle the
nonconvex and nonsmooth LM issue. Additionally, the scenario is expanded to include a system with many cloud
servers, allowing the SMD to outsource its computation to a number of cloud servers. In this case, they are able to
determine the ECM and LM issues' optimal cloud server distribution of computation in closed form. Finally, thorough
simulations show that, compared to the current offloading systems, suggested algorithms dramatically cut energy
usage and shorten the delay.

3. Preliminaries

3.1 Markov decision process

Markov decision process (MDP) basically formalizes the sequential decisions making process. MDP consist of five
components that are agent, environment(E), state(S), action(A), and reward(R). The agent is the main decision maker
who continuously interacts with the environment. It follows a stochastic deterministic policy (P: P(a/s)) where
aϵA,sϵS,rϵR, that maps the current state to action with the target to achieve maximum rewards, it is the probability
distribution of action of a given state. The environment is a transition dynamic that how the state in the environment
changes and how action gets reward is the joint distribution of the next state and reward based on current state and
action applied by the agent[1].

𝑃(𝑠 |𝑠, 𝑎) = ∑ 𝑃(𝑠 , 𝑟|𝑠, 𝑎) (aϵA,sϵS,rϵR) (1)

Policy function defines what action should be taken at by agent in particular state. The state transition probability
(𝑃(𝑠 𝑠, 𝑎)) which is defined as state transition and reward marginalization that is probability of reaching s if action
a is taken in state 𝑠 .State is defined as action should be taken to get maximum reward. The total discount return(𝛾),
essentially determines how much the reinforcement learning agents cares about rewards in the distant future relative
to those in the immediate future, and range between 0 and 1, and gives more importance to the initial rewards. The
weighted sum of reward(G,t) is defined as

𝐺 = 𝑅 + 𝛾𝑅 + 𝛾 +𝑅 +. . . +𝛾 +𝑅 (2)

 The value of state (𝑉 (𝑠)) which is total expected discount with respect to a policy 𝛱

 𝑉 (𝑠) = 𝐸 [𝐺 |𝑆 = 𝑠] (3)

ISSN NO : 0258-7982

PAGE NO: 78

Journal Of Electronics Information Technology Science And Management

 VOLUME 12, ISSUE 12, 2022

Suppose at S, policy is applied, the value of the state is Equation(3) ,by substituting the value from Equation(2) in
Equation(3) we get the recursive equation of policy, transition dynamics and successive state

𝑉 (𝑠) = ∑ 𝛱(𝑎|𝑠) ∑ 𝑃(𝑠 , 𝑟|𝑠, 𝑟)[𝑟 + 𝛾 𝑉 (𝑠)], (4)

For a particular state the optimal state value is the maximum state value 𝑉∗(𝑠) = max 𝑉 (𝑠). For a particular state
the optimal action is 𝑞∗(𝑠, 𝑎) = 𝑚𝑎𝑥 𝑞(𝑠, 𝑎).To achieve maximum rewardThe optimal bellman equation is applied
to the best optimal policy to get the maximum reward. For any policy 𝛱 according to Equation(3)

𝑉 (𝑠) = 𝐸 [𝐺 |𝑠 = 𝑠]

If policy 𝛱 is optimal

𝑉∗(𝑠) = 𝑚𝑎𝑥 𝐸[𝑅 + 𝛾𝑉∗(𝑠)|𝑆 𝐴 = 𝑎] (5)

Bellman optimality equation for state value is the summation of the sum of reward, the discount optimal value for
the successive state[28]

𝑉∗(𝑠) = 𝑚𝑎𝑥 ∑ 𝑝(𝑠 , 𝑟|𝑠, 𝑎)[𝑟 + 𝛾 𝑉∗(𝑠)], (6)

For maximisation reward two algorithm is used which policy iteration algorithm and value iteration algorithm. Policy
iteration algorithm is performed in two steps which are policy evaluation which compute values for state using policy,
this policy is provided using policy improvement that improve the policy to get high state values. Figure1 shows policy
iterative process ,firstly, a random policy is selected which is evaluated by policy evaluation that calculate state
function for that particular policy. Using policy improvement, the state function is improved and next policy is
achieved, this process continues for n number of times.

𝜋 → 𝑉 → 𝜋 → 𝑉 → 𝜋 → 𝑉

Figure 1 Policy iterative process

Algorithm1:Policy iterative algorithm

Input: assumed states

Output: iterative policy

1.Set arbitrary value for the state

2.Using policy 𝛱 compute new value for the states

𝑉 ← ∑ 𝑃(𝑠 , 𝑟|𝑠, 𝜋(𝑠)[𝑟 + 𝑉(𝑠,)] (7)

3. repeat(2) until convergence of the state value.

4.Policy improvement

5.For all data s𝜖 S, update 𝛱(s) as

𝛱(𝑠) ← 𝑎𝑟𝑔𝑚𝑎𝑥 ∑ 𝑃(𝑠 , 𝑟|𝑠, 𝑎)[𝑟 + 𝛾𝑉(𝑠)] , (8)

ISSN NO : 0258-7982

PAGE NO: 79

Journal Of Electronics Information Technology Science And Management

 VOLUME 12, ISSUE 12, 2022

In policy improvement it takes only action that maximises the summation of next reward and discounted factor with
value of next state as shown in Equation(8)

3.2 Reinforcement learning

MDP derives optimal policy implicitly from the environment .RL does the opposite of MDP it optimise
the predicted discounted benefits, the agent learns from its actual interactions with the environment and
adjust its behaviour as a result of what happens. The bellman optimal equation is defined as

𝑉∗(𝑠 , 𝑎) = 𝛱[𝑟(𝑠 , 𝑎) + 𝛾𝑚𝑎𝑥 𝑉∗(𝑠 , 𝑎)] (9)

 This Equation(9) is updated using agent’s experience tuple(st,at,rt,st+1) and at time step t the other learned
estimates are as follows

𝑉(𝑠 , 𝑎) ← 𝑉(𝑠 , 𝑎) + 𝛼 [𝑟(𝑠 , 𝑎) + 𝛾𝑚𝑎𝑥 𝑉(𝑠 , 𝑎) − 𝑉(𝑠 , 𝑎)] (10)

Where 𝛼 is the learning rate and Equation(10) can be called as Q-value for Q learning. It is off-policy which
directly generates the optimal Q-value.

3.3 Deep Q learning

The traditional method for calculating finite MDP is Q learning algorithm, which is an off-policy RL
algorithm. For large-scale problems, a deep Q network is used, which is the function approximate of Q
learning, that sustains off-policy learning with deep neural networks.[1]. For self-learning from experience,
DQN uses replay memory and uses a target network to minimize the relation between the recent model
estimate and target value and observation. With the use of a target Q network, the network is trained to
provide reliable targets during backups with temporal differences[20]. The experienced value is
stored(st,at,rt,st+1) in buffer B at time t. A target network whose parameters are updated to match those of
the online model every t step is used to train the network with parameters by sampling mini-batches (s, a,
r, s′) ∼ U(B) from memory. To reduce loss, the model is trained.

𝐿(Ө) = 𝑉(𝑠, 𝑎, 𝑟, 𝑠)~𝑚[(𝑦 − 𝑄(𝑠 , +𝑎 ; Ө))], 𝑦 = 𝑟 + 𝛾 𝑚𝑎𝑥 𝑄(𝑠 , 𝑎; 𝜃) (11)

Where m is uniform distribution and yi
DQN is the target value. To improve stability DQN uses a soft update

that tracks the weight of learned network θ′ ← τθ + (1 − τ)θ′ with τ ≪ 1. This approach can only handle
discrete, low-dimensional action spaces it cannot solve issues in high-dimensional observation spaces.
There are several interesting problems that feature continuous (real-valued) and high dimensions action
spaces, most notably physical control tasks[29]. DQN cannot be understood simply. As it depends on
identifying the course of action that optimizes the action-value function, which in the continuous-valued
scenario necessitates an iterative optimisation approach at each stage. Hence there require a technique
which can manage continuous high-dimensional action spaces. Deep deterministic policy gradient (DDPG)
is the technique which aims to maximize rewards for continuous offloading decision

3.4 Deep deterministic policy gradient

Since finding the greedy policy in continuous action spaces necessitates an optimization of at each timestep,
it is not possible to directly apply Q-learning to these problems. This is because large, unconstrained
function approximators and nontrivial action spaces necessitate an optimisation that is too slow to be
practical [30] . In place of it, an actor-critic strategy based on the DDPG algorithm can be used. The
deterministic term is stochastic which policy network under some observation gives the most accurate
action. It is a model-free actor-critic approach, which learns policy in low dimension and in continuous

ISSN NO : 0258-7982

PAGE NO: 80

Journal Of Electronics Information Technology Science And Management

 VOLUME 12, ISSUE 12, 2022

action space. In an actor-network, it takes observation and gives action. In a critic network, it takes
observation and gives a Q value which measures how good the action is

𝑐𝑟𝑖𝑡𝑖𝑐 = 𝑄 + 𝛾. 𝑄 (12)

DDPG is off policy and it consists of replay before so that it can be trained on real-world experience[25].
Figure 2 describes the architecture of DDPG, The replay buffer recalls a series of observations, actions,
rewards and the next observation. For continuous action space, the policy of action is set by treating
Equation(10) as an optimization problem for every action and solved with gradient descent. Training of
neural network to get an optimized problem is done using two DNNs, where the state is given as input and
action is received in input. Critic Q(s, a) works similar to DNNs and update Equation(11), learning is done
according to the bellman equation in Q learning. Actor 𝜇(𝑠, 𝑎) deterministically links a state's state to a
certain continuous action, while updating the expected return from the start distribution J with regard to the
actor parameters by using the chain rule

𝛥𝜇𝐽 ≈ 𝑉(𝑠, 𝑎, 𝑟, 𝑠) ∼ 𝑈(𝐵)[𝛻 (𝑠, 𝑎|𝜃)𝛻𝜃 𝜇(𝑠|𝜃)] (13)

Here critic is updated using following equation 𝜃Q← 𝜃Q-𝛼Q∇𝜃 .L(𝜃Q) and actor is updated using 𝜃𝜇 ←
𝜃𝜇\-𝛼μ ∇𝜃 J where 𝛼Q and 𝛼μ are learning rates.

Figure 2 Architecture of DDPG

ISSN NO : 0258-7982

PAGE NO: 81

Journal Of Electronics Information Technology Science And Management

 VOLUME 12, ISSUE 12, 2022

3.5 System model
In this section, the MEC system is as shown Figure 5, with one small cell which consists of multiple mobile
users and one base station. All users are assumed to have computation-intensive tasks to complete. MEC
servers are heterogeneous, these are deployed close to the base station along with mobile users. A discrete-
time model is used, in which the operational period is slotted with an equal length of time slots and indexed
by T=.{0,1,2,3…N} Each user's task arrival and channel state differ at each slot t ∈T. Therefore, each user
must decide the ratio of local execution and compute offloading at each slot in order to balance the average
energy consumption and task processing latency[31], [32].

Figure 3 System model for offloading decision of multiple users

3.6 Task generation model
 MEC systems, which consist of N antennas, at each time slot t ∈T, the channel vector of each user n ∈N is
represented by hn(t). This channel vector has several attributes called tasks. These tasks are defined as {id,
model,num_r, rate,df, ts, Sd, , Ac,,p}, where id defines the task generated by the particular user. model is the
AR model,num_r is the number of rewards, df is the data buffer size,ts is the tradeoff factor between energy
consumption and buffering delay. Sd is the state dimension, Ac is the action dimension and p is the penalty.
Each user has different task arrivals during time slot t∈T. For each time slot t∈T, the received signal is
defined as

𝑅 = ∑ ℎ (𝑡)(𝑝) . 𝑉(𝑡) + 𝑛(𝑡) (14)
Where po it is the maximum value of power transmitted to offload bits by user n∈N. V(t) is state space and
n(t) is the white Gaussian noise. The signal-to-noise ratio is defined by

𝑁𝑜(𝑡) =
()

[()]
 (15)

The uplink rate for one user is defined as R [33]

𝑅 = 𝑙𝑜𝑔(1 +

) (16)

3.6.1 Computation Model

Each user takes advantage of local execution or computation offloading in this section. To compute the task
arrivals at slot t∈T, kn(t) is the number of task arrival of user n, which is distributed over different time slots.
It is considered that bits denoted by Bo,n(t) are either computed locally or transferred on the MEC server.
Q,n(t) is the queue length of user n’s task buffer at the initial slot t. This is defined as

ISSN NO : 0258-7982

PAGE NO: 82

Journal Of Electronics Information Technology Science And Management

 VOLUME 12, ISSUE 12, 2022

𝑄 (𝑡 + 1) = [𝑄 (𝑡) − 𝐵 , (𝑡)] + 𝐾 (𝑡) ∀ 𝑡 ∊ 𝑇 (17)

3.6.2 Local computing
Heterogeneous computing capability is considered, bits can be processed locally if the device has sufficient
computing capacity[34]. By adopting the dynamic voltage and frequency scaling approach, which
dynamically aims to reduce the power consumption and adjust voltage and frequency of CPU. ง(t) is the
maximum allowable frequency, which is the ratio of power consumption for local processing to k which is
effective switching capacitance in the chip for slot t which is defined as

ง(𝑡) = (𝑝 , /𝑘) . (18)
The local execution delay for a particular task Tn where ง is the CPU cycle overall computation frequency
to run task hn(t)

𝑇 =
ง

ง()
 (19)

Corresponding energy consumption of task hn(t) which is defined as
𝐸 = 𝑘(ง(𝑡)) 𝑇 (20)

k(ง(t))2 is the energy consumption per CPU cycle to complete task hn(t). According to practical observation
[35]

The trade off between energy consumption and delay is described as total energy consumption and local
execution delay.

 𝑐𝑜𝑠𝑡 = 𝑤 𝑇 + (1 − 𝑤)𝐸 (21)

Where wm
t and wm

e weights of energy and time cost of task hn(t). The weights are assumed and process as
wmt +wm

e =1.

3.6.3 Offloading computing model
If the task initiated by the user is large, the data cannot be executed on mobile devices as there are restricted
capabilities of local computing. This generated task is offloaded to the MEC server. The tradeoff between

energy and delay is calculated. The transmission delay(𝑇) is the time required to offload data to the MEC
server is defined as.

𝑇 = (22)

Where Db is the size of the input data and R is the uplink rate. The corresponding energy(𝐸) is defined
as

𝐸 = 𝑃 𝑇 + 𝐷 𝐸 (23)

Ee energy consumed by each bit is calculated by the servers on the base station. The total cost of energy
and delay is described as [5]

 𝑐𝑜𝑠𝑡 (𝐶) = −[𝑤 𝑇 + (1 − 𝑤)𝐸] (24)
In order to guide agent to learn the experience of minimizing response time and energy consumption,
negative of weighted sum of transmission delay and energy consumption is used.

3.7 Offloading decision
Since both MEC server and local device have limited computation capacity, and user requirements are high.
There require a way with which users have a high transmission with a limited amount of energy and less
delay[36]. We have proposed a method through which according to user requirements computation,
offloading decision is done, which is discussed in algorithm 2.C1 and C2 are threshold values which are
derived from Equation(24).C1 is the maximum optimized cost ,C2 is minimum cost of user on their local
device. For each user cost Ci is considered which compared with these parameters and offloading decision
is made.

ISSN NO : 0258-7982

PAGE NO: 83

Journal Of Electronics Information Technology Science And Management

 VOLUME 12, ISSUE 12, 2022

3.8 Computation offloading decision using deep reinforcement learning
For MEC system's resource allocation and offloading, a DRL-based technique is used to reduce the
computing costs of each mobile user in terms of power consumption and delay. A deep deterministic policy
gradient(DDPG) is adopted, and each user will independently develop a dynamic computation offloading
policy, which determines an action, i.e., allocates powers for both local execution and computation
offloading, based on its observations of the environment. Since no user has any prior knowledge of the
MEC system, no user agent is aware of the M number of users, task arrival data, or wireless channel
numbers. As a result, the online learning process is completely model-free. This framework is introduced,
where state space, action space, and reward are described [20].

3.8.1 State Space
The system consists of two components: channel vectors and queue lengths of the buffer for all users. This
information is gathered by BS and then dispersed to every user [37]. The state of each user is determined
by total observation of the system, in which the selection of action is done independently.
At time t, the queue length of each user m task buffer is adjusted, and simultaneously an acknowledge signal
is sent from the BS which is the last SINR of user n. At the same time, channel reciprocity may be used to
predict the channel vector hm(t) for the impending uplink broadcast. Hence the state space can be defined
as

𝑉(𝑡) = {𝑄(𝑡), 𝑃 (𝑡), ℎ (𝑡)} (25)
At time t, power ratio Pr after noise detection at BS is defined as

𝑃 (𝑡) =
()

̥()|| ()||
 (26)

3.8.2 Action Space

According to V(t), the current state is observed by each user n. An action am(t), allocates all the power of
local computing and MEC offloading at time slot t.

𝑎 (𝑡) = {𝑝 , 𝑝 } (27)
Where pl(t)∊{0,pl(t)} and po(t)∊{0,po(t)}.It is worth noting that, unlike other traditional DRL algorithms,
this approach chooses from a set of predetermined discrete power levels in order to reduce the average
computing cost. Consequently, it is possible to lower the high dimension of discrete action spaces
drastically.

Algorithm 2: Computation offloading decision
Input: offloading parameter
Output: offloading decision
1 if the task is decided to offload then
2 if Ci>C1 then // Ci is the cost of particular user and C1 maximum optimized cost
 Offload the task to edge server
3 end if
4 else if task is decided to offload partially or locally then
5 if C2<Ci<C1 then //C2 is the minimum optimized cost
6 tasks is partially offloaded i.e some bites to the mobile device and some on MEC server
7 else
8 tasks is computed on the local device.
9 end if
10 end if

ISSN NO : 0258-7982

PAGE NO: 84

Journal Of Electronics Information Technology Science And Management

 VOLUME 12, ISSUE 12, 2022

3.8.3 Reward
This model considers the trade-off between energy consumption and delay, which is by minimization of
energy while fulfilling the task at an adequate delay.
Hence the total sum of cost is the summation of total energy cost with penalty delay.

𝑅 = 𝑊𝑚(𝐶𝑜𝑠𝑡 + 𝐶𝑜𝑠𝑡𝑜) (28)

3.9 Training and testing
There are three stages for an offloading technique to learn and assess, which are the data generation phase,
training phase and testing phase. In the first stage, each mobile user interacts with the simulated
environment, which imitates user behavior with the MEC systems and returns an acknowledgement bit
consisting of CSI and SINR
In the second stage, training is done, and the training steps are discussed in Algorithm 3. Communication
between the user and the MEC environment is a contiguous RL task, which is initiated by manually starting
the state Vn,1 with maximum steps Tmax , for each episode. During each episode at time step t, each episode
will store a tuple value{Vt,s1,t,R,Vt+1}.in buffer Vt. On other hand, a mini-batch consisting of experienced
tuple value{Vt,s1,t, R, Vt+1}t=1

l is used to update the actor and critic network.
At the testing stage, each user will load its actor networks from the training phase. After which, the user
will empty the data buffer and connect with the randomly generated environment. When its local
observation of the environment is gained as the current state, it then chooses actions based on the output of
the actor-network.

Algorithm 3: Training of DDPG
Input: randomly generated actor, critic and target network
Output: maximum number of rewards

1. for each user agent, nϵN do
2. Randomly generate network which is actor and critic
3. Set weight for target network
4. Set the replay buffer
5. for each episode 1,N do
6. Reset the MEC environment
7. Randomly generate the initial state for each users
8. for t=1,N do
9. Calculate power Po, select random action at and generate exploration noise
10. Perform action at emulator and observe rewards along with next state V(t+1) in the

emulator
11. Collect and save (V(t),at,R,,V(t+1)) in the buffer Ln
12. Randomly sample mini batch of T tuples from Ln
13. Perform gradient descent step and update critic actor network.
14. Update target vector
15. End
16. End

ISSN NO : 0258-7982

PAGE NO: 85

Journal Of Electronics Information Technology Science And Management

 VOLUME 12, ISSUE 12, 2022

4. Numerical results
In this section, numerical simulation is discussed. For simulation, the parameters considered in the proposed
algorithm are described in the Table 1.
Table 1 Parameters for proposed algorithm

PARAMETERS DESCRIPTION VALUE

dm Distance between user n to base station 200 m

pm Channel correlation coefficient 0.95

W Bandwidth 1MHz

F Computation capacity of MEC server 5GHz

fn
l CPU frequency 1.26GHz

Pl,m Max power required for local execution 2W

wo Decision weight 0.5,0.9

N Number of users 3,5

No Noise power 10-9 W

MB Mini batch size 64

૪ Gamma 0.99

⋉ Learning rate 0.0001

て Target Networks 0.001

k CPU cycles per bit 10-27

 Buffer size 25000

 Optimizer Adam

 Activation function Relu

ISSN NO : 0258-7982

PAGE NO: 86

Journal Of Electronics Information Technology Science And Management

 VOLUME 12, ISSUE 12, 2022

For the execution of DDPG, four-layer fully connected neural network with two hidden layers of neurons
400 and 300 are considered[20]. Every layer consists of an activation function Relu and the last layer
consists of the activation function sigmoid, which converts actions into ranges of 0 and 1. For the learning
neural network parameters, the adaptive moment estimation(Adam) method is used with a learning rate of
0.001.There are 5 runs for numerical simulation with index of 10000 and episode length 1000.
The proposed algorithm is compared with the baseline algorithm and the offloading decision is made. Every
user's behaviour is observed with respect to energy and rewarded with respect to noise. The goal is to find
optimal policy that maximizes the long term expected discount reward it receives. For each time slot t, the
channel condition and task arrivals varies. The objective is to balance the average energy and task
processing delay, ratio of local execution and computation offloading at each slot for each users is
computed.
In this section the analysis is done with respect to number of users. Three and five number of users are
considered on which DQN and DDPG algorithm is applied. For three number of users the average reward
received per episode is increases as the interaction between MEC and mobile device continues. As
described in Table 2 and figure 4 ,when the episode index increases the average rewards per episode
becomes stable, which indicates that policy learned for different user is learned correctly

Table 2 Average reward per episode for 3 number of users

AVERAGE REWARD PER EPISODE

Algorithm User1 User2 User3

DDPG -18.15 -36.31 -81.48

DQN -6.806 -11.21 -43.37

Figure 4 Average reward per episode for 3 number of users

The policy learned and average reward received per episode have direct relation with power consumption.
DQN algorithm shows more efficient results as compared to DDPG algorithm. As the episode index is
increasing the average power per episode becomes stable, as shown in Table 3 and Figure 5 .

Table 1 Average power per episode for 3 number of users

Algorithm User1 User2 User3

DDPG 0.45 1.28 2.11

DQN 0.66 1.12 1.76

ISSN NO : 0258-7982

PAGE NO: 87

Journal Of Electronics Information Technology Science And Management

 VOLUME 12, ISSUE 12, 2022

Figure 5 Average power per episode for 3 users

By setting the trade off factor w=0.9 energy is taken as priority by sacrificing delay, as there is limited
battery life of mobile device. As the episode index increases the average delay per episode is more. For user
1 and user 2 DQN algorithm have less delay as compared to DDPG algorithm. As shown in Table 4 and
Figure 6 we can say that DQN algorithm is more superior as compared to DDPG algorithm

Table 4 Average delay per episode for 3 number of users

Algorithm User1 User2 User3

DDPG 21.08 40.34 96.14

DQN 2.59 20.73 145.59

Figure 6 Average delay per episode for 3 number of users

For five number of users ,the penalty received for DQN algorithm and DDPG algorithm is increases as
episode index increases, which indicates that computation offloading policies for different users with

ISSN NO : 0258-7982

PAGE NO: 88

Journal Of Electronics Information Technology Science And Management

 VOLUME 12, ISSUE 12, 2022

different scenarios can be learned more efficiently ,with interaction between MEC server and mobile user.
For DDPG algorithm the number of penalty per episodes increases, but becomes stable after episode index
20. As shown in Table 5 and Figure 7 more number of users there is high optimised cost and which results
in high computation demand

Table 5 Average reward per episode for 5 number of users

ALGORITHM User1 User 2 User3 User4 User5

DDPG -15.94 -47.79 -125.17 -125.17 -125.17

DQN -8.46 -13.08 -38.16 -38.16 -38.16

Figure 7 Average reward per episode for 5 number of users

It is observed that rewards received per episode have a direct relation with the average power per episode
of each user. Since the penalty received are constant For DQN algorithm, the power consumed by each user
is almost constant. In case of DDPG the number of rewards received were becoming stable after episode
index 20,hence power consumption become stable after episode index 20. With more task arrival rate it is
observed that DDPG perform less efficiently as compared to DQN as more power is consumed as number
of users increases as shown in Table 6 and Figure8 .

Table 6 Average power per episode for 5 number of users

ALGORITHM User1 User 2 User3 User4 User5

DDPG 0.246 0.756 1.262 1.262 1.262

DQN 0.637 1.068 1.499 1.499 1.499

ISSN NO : 0258-7982

PAGE NO: 89

Journal Of Electronics Information Technology Science And Management

 VOLUME 12, ISSUE 12, 2022

Figure 9 Average power per episode for 5 number of users

 There is inverse relation between power and delay. Average delay per episode is minimum and less than
150 for each episode index as shown in fig. There is decreases in average delay per episode. For DDPG
with most the penalty received per episode there is more delay as compared to DQN algorithm as shown in
Table 7 and figure 10.

Table 7 Average delay per episode for 5 number of users

ALGORITHM User1 User 2 User3 User4 User5

DDPG 84.08 238.19 587.89 587.89 587.89

DQN 3.44 29.39 246.32 246.32 246.32

Figure10 Average delay per episode for 5 number of users

ISSN NO : 0258-7982

PAGE NO: 90

Journal Of Electronics Information Technology Science And Management

 VOLUME 12, ISSUE 12, 2022

From the above observation we can say that DQN algorithm is a value based learning algorithm and tries
to predict Q values for each state action pair in a single node, which learns the Q values from the defined
policy. DDPG has a critic model that determines the Q value but uses the actor model to determines the
action to take, hence DDPG algorithm tries to directly learn the policy. In continuous action space there is
no meaningful way to produce finite set of actions. DQN algorithm are difficult to process continuous action
space for more number of users, as the policy learning is very time consuming. Its output is deterministic
and cannot solve random strategy efficiently. The degradation of the strategy can easily cause the algorithm
to not give optimal solution. For less number of user the policy learned by both the algorithm is not optimal
as compared to more number of users.
As the number of users n Figure 11 ,when the number of users is increasing there is a gradual increase in
optimized cost when the number of users increases. The proposed DDPG gives more efficient results as
compared to DQN with a minute difference in their performance. The optimized cost is almost constant
when users are less than five, but there is a gradual increase in cost after the number of users increases. The
reason for this is there is the limited capacity of the MEC server.

Figure 11 Number of users with respect to optimised cost

In Figure 12 , optimized cost with respect to data bites is considered, which increases as data bites increase.
As more energy is consumed with more delay for offloading, DDPG has more prominent results as
compared to DQN. DQN and fully offload have almost similar behaviour when task bites size increases.
Fully local curve increases more rapidly as compared to other methods, which depicts that partially
offloading the data or fully offloading will be the appropriate solution to save energy consumption.

Figure 12 Optimised cost with respect to task bites

ISSN NO : 0258-7982

PAGE NO: 91

Journal Of Electronics Information Technology Science And Management

 VOLUME 12, ISSUE 12, 2022

Acknowledgment
The author would like to express sincere gratitude to Dr. Raj Kumari for there support and valuable
suggestions that helped and improve this paper. I would also like to pay gratitude to all the researchers who
have given there contributions on this topic
Conclusion
In this research paper, a data distributed approach has been implemented because MEC servers and local
devices have computation capacity, which varies for every user. Using DDPG a policy is created which is
trained with deep reinforcement learning to make offloading decisions, which is to either fully offload the
data to a local device or MEC server or partially. This determination is done according to optimized cost,
which is the sum of the minimized cost of energy and delay. The future scope of this approach is to create
an advanced policy which can handle a huge amount of data in a lesser amount of time. An optimized
algorithm can be proposed that can reduce the time for the iteration.

References
[1] B. Zhang, G. Zhang, W. Sun, and K. Yang, “Task Offloading with Power Control for Mobile Edge Computing Using

Reinforcement Learning-Based Markov Decision Process,” Mob. Inf. Syst., vol. 2020, 2020, doi: 10.1155/2020/7630275.
[2] P. Nawrocki and B. Sniezynski, “Adaptive Service Management in Mobile Cloud Computing by Means of Supervised

and Reinforcement Learning,” J. Netw. Syst. Manag., vol. 26, no. 1, pp. 1–22, 2018, doi: 10.1007/s10922-017-9405-4.
[3] W. Zhang, Y. Wen, K. Guan, D. Kilper, H. Luo, and D. O. Wu, “Energy-optimal mobile cloud computing under stochastic

wireless channel,” IEEE Trans. Wirel. Commun., vol. 12, no. 9, pp. 4569–4581, 2013, doi:
10.1109/TWC.2013.072513.121842.

[4] K. Jiang, H. Zhou, D. Li, X. Liu, and S. Xu, “A Q-learning based Method for Energy-Efficient Computation Offloading
in Mobile Edge Computing,” Proc. - Int. Conf. Comput. Commun. Networks, ICCCN, vol. 2020-August, 2020, doi:
10.1109/ICCCN49398.2020.9209738.

[5] C. Li et al., “Dynamic Offloading for Multiuser Muti-CAP MEC Networks: A Deep Reinforcement Learning Approach,”
IEEE Trans. Veh. Technol., vol. 70, no. 3, pp. 2922–2927, 2021, doi: 10.1109/TVT.2021.3058995.

[6] S. N. Shirazi, A. Gouglidis, A. Farshad, and D. Hutchison, “The extended cloud: Review and analysis of mobile edge
computing and fog from a security and resilience perspective,” IEEE J. Sel. Areas Commun., vol. 35, no. 11, pp. 2586–
2595, 2017, doi: 10.1109/JSAC.2017.2760478.

[7] Y. Jararweh, A. Doulat, O. Alqudah, E. Ahmed, M. Al-Ayyoub, and E. Benkhelifa, “The future of mobile cloud
computing: Integrating cloudlets and Mobile Edge Computing,” 2016 23rd Int. Conf. Telecommun. ICT 2016, pp. 5–9,
2016, doi: 10.1109/ICT.2016.7500486.

[8] H. Eom, P. S. Juste, R. Figueiredo, O. Tickoo, R. Illikkal, and R. Iyer, “Machine learning-based runtime scheduler for
mobile offloading framework,” Proc. - 2013 IEEE/ACM 6th Int. Conf. Util. Cloud Comput. UCC 2013, pp. 17–25, 2013,
doi: 10.1109/UCC.2013.21.

[9] W. Junior, E. Oliveira, A. Santos, and K. Dias, “A context-sensitive offloading system using machine-learning
classification algorithms for mobile cloud environment,” Futur. Gener. Comput. Syst., vol. 90, pp. 503–520, 2019, doi:
10.1016/j.future.2018.08.026.

[10] J. Yan, S. Bi, Y. J. Zhang, and M. Tao, “Optimal Task Offloading and Resource Allocation in Mobile-Edge Computing
with Inter-User Task Dependency,” IEEE Trans. Wirel. Commun., vol. 19, no. 1, pp. 235–250, 2020, doi:
10.1109/TWC.2019.2943563.

[11] S. Yu, X. Chen, L. Yang, D. Wu, M. Bennis, and J. Zhang, “Intelligent Edge: Leveraging Deep Imitation Learning for
Mobile Edge Computation Offloading,” IEEE Wirel. Commun., vol. 27, no. 1, pp. 92–99, 2020, doi:
10.1109/MWC.001.1900232.

[12] J. Ren and S. Xu, “DDPG Based Computation Offloading and Resource Allocation for MEC Systems with Energy
Harvesting,” IEEE Veh. Technol. Conf., vol. 2021-April, pp. 0–4, 2021, doi: 10.1109/VTC2021-
Spring51267.2021.9448922.

[13] Y. Wang, M. Sheng, X. Wang, L. Wang, and J. Li, “Mobile-Edge Computing: Partial Computation Offloading Using
Dynamic Voltage Scaling,” IEEE Trans. Commun., vol. 64, no. 10, pp. 4268–4282, 2016, doi:
10.1109/TCOMM.2016.2599530.

[14] A. Cini, C. D’Eramo, J. Peters, and C. Alippi, “Deep Reinforcement Learning with Weighted Q-Learning,” 2020, [Online].
Available: http://arxiv.org/abs/2003.09280

[15] S. Park, D. Kwon, J. Kim, Y. K. Lee, and S. Cho, “Adaptive real-time offloading decision-making for mobile edges: Deep
reinforcement learning framework and simulation results,” Appl. Sci., vol. 10, no. 5, 2020, doi: 10.3390/app10051663.

[16] J. Chen, H. Xing, Z. Xiao, L. Xu, and T. Tao, “A DRL Agent for Jointly Optimizing Computation Offloading and Resource
Allocation in MEC,” IEEE Internet Things J., vol. 8, no. 24, pp. 17508–17524, 2021, doi: 10.1109/JIOT.2021.3081694.

[17] Z. H. Abbas et al., “Computational offloading in mobile edge with comprehensive and energy efficient cost function: A
deep learning approach,” Sensors, vol. 21, no. 10, pp. 1–18, 2021, doi: 10.3390/s21103523.

ISSN NO : 0258-7982

PAGE NO: 92

Journal Of Electronics Information Technology Science And Management

 VOLUME 12, ISSUE 12, 2022

[18] Z. Tong, X. Deng, F. Ye, S. Basodi, X. Xiao, and Y. Pan, “Adaptive computation offloading and resource allocation
strategy in a mobile edge computing environment,” Inf. Sci. (Ny)., vol. 537, pp. 116–131, 2020, doi:
10.1016/j.ins.2020.05.057.

[19] J. Li, H. Gao, T. Lv, and Y. Lu, “Deep reinforcement learning based computation offloading and resource allocation for
MEC,” IEEE Wirel. Commun. Netw. Conf. WCNC, vol. 2018-April, pp. 1–6, 2018, doi: 10.1109/WCNC.2018.8377343.

[20] Z. Chen and X. Wang, “Decentralized computation offloading for multi-user mobile edge computing: a deep reinforcement
learning approach,” Eurasip J. Wirel. Commun. Netw., vol. 2020, no. 1, pp. 1–27, 2020, doi: 10.1186/s13638-020-01801-
6.

ISSN NO : 0258-7982

PAGE NO: 93

Journal Of Electronics Information Technology Science And Management

 VOLUME 12, ISSUE 12, 2022

