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ABSTRACT  

Energy harvesting and mobile edge computing, both have the potential to increase the longevity of wireless data. In 
this paper, several mobile users are taken into account in a MEC setup which generates stochastic task arrivals and 
wireless channels, which are designed to jointly optimize latency and energy-efficient communications Computation 
is done, where the deep reinforcement learning-based dynamic algorithm decides whether to take offloading enabled, 
which is either computing in the MEC server, or partially computing to local devices, for each unit of time. For 
continuous action space, a deep deterministic policy gradient approach is used, which learn effective computation 
offloading policies individually for each mobile user. Hence, assign powers for both local execution and task 
offloading from the learned policy This study confirms that the suggested dynamic algorithm achieves the expected 
performance according to the performance evaluation using data-intensive simulations as compared to the traditional 
deep reinforcement learning algorithm. 

Keywords: Deep reinforcement learning, extended Deep Q-learning for offloading decision, mobile edge computing   

1. Introduction 

As mobile user equipment (UEs) like smartphones, tablets, and Internet of Things (IoT) devices become significantly 
more popular, new mobile apps like navigation, facial recognition, and interactive online gaming are continually 
appearing. But these mobile devices have a limited amount of computation capacity and are energy-hungry 
applications, which restricts them from providing quality of service(QoS)[1].In order to increase service availability, 
speed, and reliability, mobile cloud computing(MCC) is introduced which facilitates compute and storage transfer 
from resource-constrained mobile devices to cloud servers. Additionally, it can lower the device's energy use without 
affecting how well applications run[2].MCC provides hardware as well as software services to run this computation-
intensive application  on the cloud server, this reduces cost and provides more scalability.  

With recent advancements in IoT are resulting in more demands that are unable to meet by MCC, few requirements 
are geo-distribution, low latency, position awareness, and mobility support[3]. Traditional cloud computing solutions 
let UEs use the tremendous computational capacity in distant public clouds, but they may result in lengthy delays 
because of data interchange across wide area networks (WANs). While the wireless spectrum resource has been fully 
utilized in MCC through the use of techniques like Ultra Dense Networks (UDN) and Dynamic Spectrum Access 
(DSA), the big data traffic brought on by computationally intensive tasks grows exponentially and frequently goes 
unaddressed due to a lack of an appropriate resource assignment scheme to handle the massive service traffic[4]. 
Cloud computing may be used for computation-intensive services to compute activities on the cloud but at the expense 
of transmission and information leakage. By assisting nearby computational access points (CAPs) in networks with 
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computing chores, mobile edge computing (MEC) has been offered as a solution to this issue. MEC may drastically 
reduce latency and energy usage for both communication and calculation[5]. 

MEC is a novel paradigm in Cloud radio access networks that can increase the compute capacity at the edge of mobile 
networks by adding high-performance servers[6].MEC is the extended cloud that is positioned at the periphery of 
mobile networks, removing the need to transfer resource-intensive computing and storage operations from mobile 
devices to the network's core (the centralised cloud data centre)[7]. Offloading tasks eases the computational load on 
mobile devices and extends battery life. By using machine learning and deep learning techniques a system is trained 
to automatically make decisions on whether to compute tasks locally or server[8]. It is important to have effective 
resource management, The goal of a MEC system is to handle as many compute offloading requests from various 
MDs as is feasible given the system's constrained processing and radio capabilities. The system might result in sluggish 
reaction times and excessive power consumption if resource allocations are not coordinated well, which would then 
have an impact on the performance of the overall computation offloading.  

This proposes an intelligent offloading decision for handling the optimization problem of computation offloading and 
resource allocation for a dynamic and continuous MEC environment. 

Key contributions can be summarized below  

 A multi-user system is considered, where each user learns a dynamic continuous offloading policy with the 
help of random task arrivals and time-varying wireless channels. The main objective is to optimize the cost 
sum with respect to power consumption and delay. 

 An approach is adopted in which each user will independently develop a decentralized dynamic computation 
offloading policy, that determines an action, i.e., allocates powers for both local execution and computation 
offloading, based on its observations of the environment. 

 Simulations are performed and compared with baseline strategy, and policy is learned according to DDPG. 
An offloading decision is made which determines whether to fully offload the data or partially offload the 
data to the MEC server or to a local device. 
 

2. Related works  

The advantages of computational offloading in Mobile Cloud Computing (MCC), such as energy savings and 
increased mobile application performance, have drawn attention[9]. But more advancements in technology have led 
to problems in cloud servers to provide efficient services for computation-intensive tasks, which is overcome using 
mobile edge computing. [4]have proposed energy-efficient computation offloading, which minimizes energy for all 
users using  mixed integer non-linear programming problem (MINLP) and provides a value iteration based 
Reinforcement Learning (RL) technique, known as Q-Learning, to ascertain the ideal plan of joint computation 
offloading and resource allocation. In [5]  a multiuser mobile edge computing (MEC) network enables users to offload 
some of their duties to several computational access points (CAPs). That takes into account real-world scenarios where 
task characteristics and processing capacity at the CAPs may change over time, posing an issue with dynamic 
offloading. Which  first frame this issue as a Markov decision process (MDP) and then introduces the state and action 
spaces to address it. The users may dynamically fine-tune the offloading proportion in order to assure the system 
performance as evaluated by the latency and energy consumption. They also  build a unique offloading approach based 
on the deep Q network (DQN). [10]have taken into account two user MEC networks, which have a series of tasks to 
execute, where the result of the task at WD1 is needed to compute an intermediate task at WD2. A mixed integer 
optimization problem is introduced to reduce the weighted total of the WDs' energy consumption and task execution 
time. This is done because of the inter-user task interdependence. Each WD's transmission power, local CPU 
frequencies, and workload offloading choices are cooperatively optimised. For multi-access edge computing (MEC) 
networks,  [11] have novel deep imitation learning (DIL) driven edge-cloud computation offloading system has been 
developed. This approach uses optimal behavioral cloning to minimize the offloading cost of a time-varying 
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environment. Supervised learning from demonstrations to observation is carried out through behavioural cloning. For 
the intelligent framework, they have  created a deep imitation learning-based offloading model, which is initially 
trained offline using learning examples. The model  generates near-optimal online offloading choices with a very 
quick inference speed after a simple and quick implementation.[12] Analyze a combined resource allocation and 
computation offloading problem using multiple user equipment (UE) that is EH device and rechargeable battery 
equipped. The goal of the task is to reduce system energy usage while ultimately fulfilling the UE's latency limitation. 
there are  three steps used for  the formulation of an intractable mixed integer nonlinear programming (MINLP). 
Which initially uses a deep reinforcement learning framework called Deep Deterministic Policy Gradient to get 
continuous power allocation (DDPG). After that, channel assignment is determined using the Lagrangian function and 
the Karush-Kuhn-Tucher (KKT) condition. Finally, we change the DDPG framework's state, action, and reward. 
According to the simulation results, our suggested method discovers offloading decisions and power allocation with 
the lowest energy usage. [13] investigate partial computation offloading by jointly maximising the smart mobile 
device's (SMD) compute speed, transmit power, and offloading ratio with two system design goals: minimising the 
SMD's energy consumption (ECM) and minimising the delay of the application's execution (LM).   Both the ECM 
issue and the LM problem are considered  nonconvex problems, taking into account the scenario where the SMD is 
serviced by a single cloud server.  A variable substitution approach is used to recast the ECM issue as a convex one 
and find the best solution. A locally optimum solution using the univariate search technique is suggested to handle the 
nonconvex and nonsmooth LM issue. Additionally, the scenario is expanded to include a system with many cloud 
servers, allowing the SMD to outsource its computation to a number of cloud servers. In this case, they are able to 
determine the ECM and LM issues' optimal cloud server distribution of computation in closed form. Finally, thorough 
simulations show that, compared to the current offloading systems, suggested algorithms dramatically cut energy 
usage and shorten the delay.  

 

3. Preliminaries   
 

3.1 Markov decision process 

Markov decision process (MDP) basically formalizes the sequential decisions making process. MDP consist of five 
components that are agent, environment(E), state(S), action(A), and reward(R). The agent is the main decision maker 
who continuously interacts with the environment. It follows a stochastic deterministic policy (P: P(a/s)) where 
aϵA,sϵS,rϵR, that maps the current state to action with the target to achieve maximum rewards, it is the probability 
distribution of action of a given state. The environment is a transition dynamic that how the state in the environment 
changes and how action gets reward is the joint distribution of the next state and reward based on current state and 
action applied by the agent[1].  

𝑃(𝑠 |𝑠, 𝑎) = ∑ 𝑃(𝑠 , 𝑟|𝑠, 𝑎)  (aϵA,sϵS,rϵR)                                                 (1) 

Policy function defines what action should be taken at by agent in particular state. The state transition probability 
(𝑃(𝑠 𝑠, 𝑎)) which is defined as state transition and reward marginalization that is probability of reaching s if action 
a is taken in state 𝑠  .State is defined as action should be taken to get maximum reward. The total discount return(𝛾), 
essentially determines how much the reinforcement learning agents cares about rewards in the distant future relative 
to those in the immediate future, and range between 0 and 1, and gives more importance to the initial rewards. The 
weighted sum of reward(G,t) is defined as 

𝐺 = 𝑅 +  𝛾𝑅 + 𝛾 +𝑅 +. . . +𝛾 +𝑅                                               (2) 

 The value of state ( 𝑉  (𝑠)) which is total expected discount with respect to a policy 𝛱  

   𝑉  (𝑠) = 𝐸  [𝐺 |𝑆 = 𝑠]                                                                    (3) 
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Suppose at S, policy is applied, the value of the state is Equation(3) ,by substituting the value from Equation(2) in 
Equation(3) we get the recursive equation of policy, transition dynamics and successive state   

𝑉 (𝑠) = ∑ 𝛱(𝑎|𝑠) ∑ 𝑃(𝑠 , 𝑟|𝑠, 𝑟)[𝑟 + 𝛾 𝑉 (𝑠)],                                        (4) 

For a particular state the optimal state value is the maximum state value 𝑉∗(𝑠) = max 𝑉  (𝑠). For a particular state 
the optimal action is 𝑞∗(𝑠, 𝑎) = 𝑚𝑎𝑥 𝑞(𝑠, 𝑎).To achieve maximum rewardThe optimal bellman equation is applied 
to the best optimal policy to get the maximum reward. For any policy 𝛱 according to Equation(3)  

𝑉 (𝑠) = 𝐸  [𝐺 |𝑠 = 𝑠] 

If  policy 𝛱 is optimal  

𝑉∗(𝑠) = 𝑚𝑎𝑥  𝐸[𝑅 + 𝛾𝑉∗(𝑠 )|𝑆 𝐴  = 𝑎]                                            (5) 

Bellman optimality equation for state value is the summation of the sum of reward, the discount optimal value for 
the successive state[28] 

𝑉∗(𝑠) = 𝑚𝑎𝑥 ∑ 𝑝(𝑠 , 𝑟|𝑠, 𝑎)[𝑟 + 𝛾 𝑉∗(𝑠 )],                                                     (6) 

For maximisation reward two algorithm is used which policy iteration algorithm and value iteration algorithm. Policy 
iteration algorithm is performed in two steps which are policy evaluation which compute values for state using policy, 
this policy is provided using policy improvement that improve the policy to get high state values. Figure1 shows policy 
iterative process ,firstly, a random policy is selected which is evaluated by policy evaluation that calculate state 
function for that particular policy. Using policy improvement, the state function is improved and next policy is 
achieved, this process continues for n number of times. 

𝜋 → 𝑉 → 𝜋 → 𝑉 → 𝜋 → 𝑉  

Figure 1 Policy iterative process 

 

 

 

 

 

 

 

 

Algorithm1:Policy iterative algorithm 

Input: assumed states 

Output: iterative policy 

1.Set arbitrary value for the state 

2.Using policy 𝛱 compute new value for the states 

𝑉 ← ∑ 𝑃(𝑠 , 𝑟|𝑠, 𝜋(𝑠)[𝑟 + 𝑉(𝑠, )]                                                   (7) 

3. repeat(2) until convergence of the state value. 

4.Policy improvement  

5.For all data s𝜖 S, update 𝛱(s) as  

𝛱(𝑠) ← 𝑎𝑟𝑔𝑚𝑎𝑥 ∑ 𝑃(𝑠 , 𝑟|𝑠, 𝑎)[𝑟 + 𝛾𝑉(𝑠 )]                                          , (8) 
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In policy improvement it takes only action that maximises the summation of next reward and discounted factor with 
value of next state as shown in Equation(8) 

3.2 Reinforcement learning 

MDP derives optimal policy implicitly from the environment .RL does the opposite of MDP it  optimise 
the predicted discounted benefits, the agent  learns from its actual interactions with the environment and 
adjust its behaviour as a result of what happens. The bellman optimal equation is defined as  

𝑉∗(𝑠 , 𝑎 ) =  𝛱[𝑟(𝑠 , 𝑎 ) + 𝛾𝑚𝑎𝑥  𝑉∗(𝑠 , 𝑎 )]                         (9) 

 This Equation(9) is updated using agent’s experience tuple(st,at,rt,st+1) and at time step t the other learned 
estimates are as follows  

𝑉(𝑠 , 𝑎 ) ← 𝑉(𝑠 , 𝑎 ) + 𝛼 [𝑟(𝑠 , 𝑎 ) + 𝛾𝑚𝑎𝑥  𝑉(𝑠 , 𝑎 ) − 𝑉(𝑠 , 𝑎 )]    (10) 

Where 𝛼 is the learning rate and Equation(10) can be called as Q-value for Q learning. It is off-policy which 
directly generates the optimal Q-value. 

3.3 Deep Q learning  

The traditional method for calculating finite MDP is Q learning algorithm, which is an off-policy RL 
algorithm. For large-scale problems, a deep Q network is used, which is the function approximate of Q 
learning, that sustains off-policy learning with deep neural networks.[1]. For self-learning from experience, 
DQN uses replay memory and uses a target network to minimize the relation between the recent model 
estimate and target value and observation. With the use of a target Q network, the network is trained to 
provide reliable targets during backups with temporal differences[20]. The experienced value is 
stored(st,at,rt,st+1) in buffer B at time t. A target network whose parameters are updated to match those of 
the online model every t step is used to train the network with parameters by sampling mini-batches (s, a, 
r, s′) ∼ U(B) from memory. To reduce loss, the model is trained. 

𝐿(Ө) = 𝑉(𝑠, 𝑎, 𝑟, 𝑠)~𝑚[(𝑦 − 𝑄(𝑠 , +𝑎 ; Ө)) ], 𝑦 = 𝑟 + 𝛾 𝑚𝑎𝑥 𝑄(𝑠 , 𝑎; 𝜃 )                  (11) 

Where m is uniform distribution and yi
DQN is the target value. To improve stability  DQN uses a soft update 

that tracks the weight of learned network θ′ ← τθ + (1 − τ )θ′ with τ ≪ 1. This approach can only handle 
discrete, low-dimensional action spaces it cannot solve issues in high-dimensional observation spaces. 
There are several interesting problems that feature continuous (real-valued) and high dimensions action 
spaces, most notably physical control tasks[29]. DQN cannot be understood simply. As it depends on 
identifying the course of action that optimizes the action-value function, which in the continuous-valued 
scenario necessitates an iterative optimisation approach at each stage. Hence there require a technique 
which can manage continuous high-dimensional action spaces. Deep deterministic policy gradient (DDPG) 
is the technique which aims to maximize rewards for continuous offloading decision   

3.4 Deep deterministic policy gradient  

Since finding the greedy policy in continuous action spaces necessitates an optimization of at each timestep, 
it is not possible to directly apply Q-learning to these problems. This is because large, unconstrained 
function approximators and nontrivial action spaces necessitate an optimisation that is too slow to be 
practical [30] . In place of it, an actor-critic strategy based on the DDPG algorithm can be used. The 
deterministic term is stochastic which policy network under some observation gives the most accurate 
action. It is a model-free actor-critic approach, which learns policy in low dimension and in continuous 
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action space. In an actor-network, it takes observation and gives action. In a critic network, it takes 
observation and gives a Q value which measures how good the action is  

𝑐𝑟𝑖𝑡𝑖𝑐 = 𝑄 + 𝛾. 𝑄                                                                  (12) 

DDPG is off policy and it consists of replay before so that it can be trained on real-world experience[25]. 
Figure 2 describes the architecture of DDPG, The replay buffer recalls a series of observations, actions, 
rewards and the next observation. For continuous action space, the policy of action is set by treating 
Equation(10) as an optimization problem for every action and solved with gradient descent. Training of 
neural network to get an optimized problem is done using two DNNs, where the state is given as input and 
action is received in input. Critic Q(s, a) works similar to DNNs and update Equation(11), learning is done 
according to the bellman equation in Q learning. Actor 𝜇(𝑠, 𝑎) deterministically links a state's state to a 
certain continuous action, while updating the expected return from the start distribution J with regard to the 
actor parameters by using the chain rule 

𝛥𝜇𝐽 ≈ 𝑉(𝑠, 𝑎, 𝑟, 𝑠 ) ∼ 𝑈(𝐵)[𝛻 (𝑠, 𝑎|𝜃 )𝛻𝜃  𝜇(𝑠|𝜃 )]               (13) 

Here critic is updated using following equation  𝜃Q← 𝜃Q-𝛼Q∇𝜃 .L(𝜃Q) and actor is updated using 𝜃𝜇 ←
𝜃𝜇\-𝛼μ ∇𝜃 J where 𝛼Q and 𝛼μ are learning rates. 

 

Figure 2 Architecture of DDPG 
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3.5 System model 
In this section, the MEC system is as shown Figure 5, with one small cell which consists of multiple mobile 
users and one base station. All users are assumed to have computation-intensive tasks to complete. MEC 
servers are heterogeneous, these are deployed close to the base station along with mobile users. A discrete-
time model is used, in which the operational period is slotted with an equal length of time slots and indexed 
by T=.{0,1,2,3…N} Each user's task arrival and channel state differ at each slot t ∈T. Therefore, each user 
must decide the ratio of local execution and compute offloading at each slot in order to balance the average 
energy consumption and task processing latency[31], [32]. 

 

Figure 3 System model for offloading decision of multiple users 

3.6 Task generation model   
 MEC systems, which consist of N antennas, at each time slot t ∈T, the channel vector of each user n ∈N is 
represented by hn(t). This channel vector has several attributes called tasks. These tasks are defined as {id, 
model,num_r, rate,df, ts, Sd, , Ac,,p}, where id defines the task generated by the particular user. model is the 
AR model,num_r is the number of rewards, df is the data buffer size,ts is the tradeoff factor between energy 
consumption and buffering delay. Sd is the state dimension, Ac is the action dimension and p is the penalty. 
Each user has different task arrivals during time slot t∈T. For each time slot t∈T, the received signal is 
defined as  

𝑅  = ∑ ℎ (𝑡)(𝑝 ) . 𝑉(𝑡) + 𝑛(𝑡)                                                                           (14) 
Where po it is the maximum value of power transmitted to offload bits by user n∈N. V(t) is state space and 
n(t) is the white Gaussian noise. The signal-to-noise ratio is defined by 

𝑁𝑜(𝑡) =
( )

[ ( )]
                                                                    (15) 

The uplink rate for one user is defined as R [33] 

𝑅 = 𝑙𝑜𝑔(1 +
 

)                                                              (16) 

 
3.6.1 Computation Model  

Each user takes advantage of local execution or computation offloading in this section. To compute the task 
arrivals at slot t∈T, kn(t) is the number of task arrival of user n, which is distributed over different time slots. 
It is considered that bits denoted by Bo,n(t)  are either computed locally or transferred on the MEC server. 
Q,n(t) is the queue length of user n’s task buffer at the initial slot t. This is defined as 
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𝑄 (𝑡 + 1) = [𝑄 (𝑡) − 𝐵 , (𝑡)] + 𝐾 (𝑡)   ∀ 𝑡 ∊ 𝑇                                   (17) 
 

3.6.2 Local computing  
Heterogeneous computing capability is considered, bits can be processed locally if the device has sufficient 
computing capacity[34]. By adopting the dynamic voltage and frequency scaling approach, which 
dynamically aims to reduce the power consumption and adjust voltage and frequency of CPU. ง(t) is the 
maximum allowable frequency, which is the ratio of power consumption for local processing to k which is 
effective switching capacitance in the chip for slot t which is defined as   

ง(𝑡) = (𝑝 , /𝑘) .                                                                               (18) 
The local execution delay for a particular task Tn where ง is the CPU cycle overall computation frequency 
to run task hn(t)   

𝑇 =
ง

ง( )
                                                                                            (19) 

Corresponding energy consumption of task hn(t) which is defined as  
𝐸 = 𝑘(ง(𝑡)) 𝑇                                                                                    (20) 

k(ง(t))2 is the energy consumption per CPU cycle to complete task hn(t). According to practical observation 
[35] 

The trade off between energy consumption and delay is described as total energy consumption and local 
execution delay. 

                       𝑐𝑜𝑠𝑡  = 𝑤 𝑇 + (1 − 𝑤 )𝐸                                                             (21) 

Where wm
t and wm

e weights of energy and time cost of task hn(t). The weights are assumed and process as  
wmt +wm

e =1. 
 

3.6.3 Offloading computing model  
If the task initiated by the user is large, the data cannot be executed on mobile devices  as there are  restricted 
capabilities of local computing. This generated task is offloaded to the MEC server. The tradeoff between 

energy and delay is calculated. The transmission delay(𝑇 ) is the time required to offload data to the MEC 
server is defined as.  

𝑇 =                                                                                         (22) 

Where Db is the size of the input data and R is the uplink rate. The corresponding energy(𝐸 ) is defined 
as  

𝐸  = 𝑃 𝑇 + 𝐷 𝐸                                                                           (23) 

Ee  energy consumed by each bit is calculated by the servers on the base station. The total cost of energy 
and delay is described as [5] 

 𝑐𝑜𝑠𝑡 (𝐶)  = −[𝑤 𝑇 + (1 − 𝑤 )𝐸 ]                                                     (24) 
In order to guide agent to learn the experience of minimizing response time and energy consumption, 
negative of weighted sum of transmission delay and energy consumption is used. 
 

3.7 Offloading decision  
Since both MEC server and local device have limited computation capacity, and user requirements are high. 
There require a way with which users have a high transmission with a limited amount of energy and less 
delay[36]. We have proposed a method through which according to user requirements computation, 
offloading decision is done, which is discussed in algorithm 2.C1 and C2 are threshold values which are 
derived from Equation(24).C1 is the maximum optimized cost ,C2 is minimum cost of user on their local 
device. For each user cost Ci is considered which compared with these parameters and offloading decision 
is made. 
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3.8 Computation offloading decision using deep reinforcement learning  
For MEC system's resource allocation and offloading, a DRL-based technique is used to reduce the 
computing costs of each mobile user in terms of power consumption and delay. A deep deterministic policy 
gradient(DDPG) is adopted, and each user will independently develop a dynamic computation offloading 
policy, which determines an action, i.e., allocates powers for both local execution and computation 
offloading, based on its observations of the environment. Since no user has any prior knowledge of the 
MEC system, no user agent is aware of the M number of users, task arrival data, or wireless channel 
numbers. As a result, the online learning process is completely model-free. This framework is introduced, 
where state space, action space, and reward are described [20]. 
 

3.8.1 State Space 
The system consists of two components: channel vectors and queue lengths of the buffer for all users. This 
information is gathered by BS and then dispersed to every user [37]. The state of each user is determined 
by total observation of the system, in which the selection of action is done independently. 
At time t, the queue length of each user m task buffer is adjusted, and simultaneously an acknowledge signal 
is sent from the BS which is the last SINR of user n. At the same time, channel reciprocity may be used to 
predict the channel vector hm(t) for the impending uplink broadcast. Hence the state space can be defined 
as  

𝑉(𝑡) = {𝑄(𝑡), 𝑃 (𝑡), ℎ (𝑡)}                                                               (25) 
At time t, power ratio Pr after noise detection at BS is defined as  

𝑃 (𝑡) =
( )

̥( )|| ( )||
                                                                            (26) 

 
3.8.2 Action Space 

According to V(t), the current state is observed by each user n. An action am(t), allocates all the power of 
local computing and MEC offloading at time slot t. 

𝑎 (𝑡) = {𝑝 , 𝑝 }                                                                             (27) 
Where pl(t)∊{0,pl(t)} and po(t)∊{0,po(t)}.It is worth noting that, unlike other traditional DRL algorithms, 
this approach chooses from a set of predetermined discrete power levels in order to reduce the average 
computing cost. Consequently, it is possible to lower the high dimension of discrete action spaces 
drastically. 
 

Algorithm 2: Computation offloading decision 
Input: offloading parameter 
Output: offloading decision   
1 if the task is decided to offload then  
2 if  Ci>C1 then       // Ci is the cost of particular user and C1 maximum optimized cost  
 Offload the task to edge server 
3 end if 
4 else if task is decided to offload partially or locally then 
5       if C2<Ci<C1 then          //C2 is the minimum optimized cost  
6            tasks is partially offloaded i.e some bites to the mobile device and some on MEC server  
7       else 
8             tasks is computed on the local device. 
9       end if  
10 end if  
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3.8.3 Reward  
This model considers the trade-off between energy consumption and delay, which is by minimization of 
energy while fulfilling the task at an adequate delay.  
Hence the total sum of cost is the summation of total energy cost with penalty delay. 

𝑅 =  𝑊𝑚(𝐶𝑜𝑠𝑡 + 𝐶𝑜𝑠𝑡𝑜 )                                                                        (28) 
 

3.9 Training and testing  
There are three stages for an offloading technique to learn and assess, which are the data generation phase, 
training phase and testing phase. In the first stage, each mobile user interacts with the simulated 
environment, which imitates user behavior with the MEC systems and returns an acknowledgement bit 
consisting of CSI and SINR 
In the second stage, training is done, and the training steps are discussed in Algorithm 3. Communication 
between the user and the MEC environment is a contiguous RL task, which is initiated by manually starting 
the state Vn,1 with maximum steps Tmax , for each episode. During each episode at time step t, each episode 
will store a tuple value{Vt,s1,t,R,Vt+1}.in buffer Vt. On other hand, a mini-batch consisting of experienced 
tuple value{Vt,s1,t, R, Vt+1}t=1

l is used to update the actor and critic network.  
At the testing stage, each user will load its actor networks from the training phase. After which, the user 
will empty the data buffer and connect with the randomly generated environment. When its local 
observation of the environment is gained as the current state, it then chooses actions based on the output of 
the actor-network. 
 
       

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 

Algorithm 3: Training of DDPG 
Input: randomly generated actor, critic and target network 
Output: maximum number of rewards  

1. for each user agent, nϵN do 
2.       Randomly generate network which is actor and critic 
3.       Set weight for target network 
4.       Set the replay buffer 
5. for each episode 1,N do 
6.       Reset the MEC environment 
7.       Randomly generate the initial state for each users 
8.       for t=1,N do 
9.       Calculate power Po, select random action at and generate exploration noise 
10.  Perform action at emulator and observe rewards along with next state V(t+1) in the 

emulator 
11. Collect and save (V(t),at,R,,V(t+1)) in the buffer Ln 
12. Randomly sample mini batch of T tuples from Ln 
13. Perform gradient descent step and update critic actor network. 
14. Update target vector  
15.  End 
16. End  
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4. Numerical results  
In this section, numerical simulation is discussed. For simulation, the parameters considered in the proposed 
algorithm are described in the Table 1.  
Table 1 Parameters for proposed algorithm 

PARAMETERS DESCRIPTION VALUE 

dm Distance between user n to base station 200 m 

pm Channel correlation coefficient  0.95 

W Bandwidth  1MHz 

F Computation capacity of MEC server 5GHz 

fn
l CPU frequency 1.26GHz 

Pl,m Max power required for local execution  2W 

wo Decision weight  0.5,0.9 

N Number of users  3,5 

No Noise power  10-9 W 

MB Mini batch size  64 

૪ Gamma  0.99 

⋉ Learning rate  0.0001 

て Target Networks  0.001 

k CPU cycles per bit  10-27 

 Buffer size 25000 

 Optimizer  Adam 

 Activation function  Relu 
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For the execution of DDPG, four-layer  fully connected neural network with two hidden layers of neurons 
400 and 300 are considered[20]. Every layer consists of an activation function Relu and the last layer 
consists of the activation function sigmoid, which converts actions into ranges of 0 and 1. For the learning 
neural network parameters, the adaptive moment estimation(Adam) method is used with a learning rate of 
0.001.There are 5 runs for numerical simulation with index of 10000 and episode length 1000. 
The proposed algorithm is compared with the baseline algorithm and the offloading decision is made. Every 
user's behaviour is observed with respect to energy and rewarded with respect to noise. The goal is to find 
optimal policy that maximizes the long term expected discount reward it receives. For each time slot t, the 
channel condition and task arrivals varies. The objective is to balance the average energy and task 
processing delay, ratio of local execution and computation offloading at each slot for each users is 
computed.  
In this section the analysis is done with respect to number of users. Three and five number of users are 
considered on which DQN and DDPG algorithm is applied. For three number of users the average reward 
received per episode is increases as the interaction between MEC and mobile device continues. As 
described in Table 2 and figure 4 ,when the episode index increases the average rewards per episode 
becomes stable, which indicates that policy learned  for different user is learned correctly  

Table 2 Average reward per episode for 3 number of users 

AVERAGE REWARD PER EPISODE 

Algorithm  User1 User2 User3 

DDPG -18.15 -36.31 -81.48 

DQN -6.806 -11.21 -43.37 

 
Figure 4 Average reward per episode for 3 number of users 

The policy learned and average reward received per episode have direct relation with power consumption. 
DQN algorithm shows more efficient results as compared to DDPG algorithm. As the episode index is 
increasing the average power per episode becomes stable, as shown in Table 3 and Figure 5 . 

Table 1 Average power per episode for 3 number of users 

Algorithm  User1 User2 User3 

DDPG 0.45 1.28 2.11 

DQN 0.66 1.12 1.76 
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Figure 5 Average power per episode for 3 users  

By setting the trade off factor w=0.9 energy is taken as priority by sacrificing delay, as there is limited 
battery life of mobile device. As the episode index increases the average delay per episode is more. For user 
1 and user 2 DQN algorithm have less delay as compared to DDPG algorithm. As shown in Table 4 and 
Figure 6 we can say that DQN algorithm is more superior as compared to DDPG algorithm   
           

Table 4 Average delay per episode for 3 number of users 

Algorithm  User1 User2 User3 

DDPG 21.08 40.34 96.14 

DQN 2.59 20.73 145.59 

 
Figure 6 Average delay per episode for 3 number of users 

For five number of users ,the penalty received for DQN algorithm  and DDPG algorithm is increases as 
episode index increases, which indicates that computation offloading policies for different users with 
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different scenarios can be learned more efficiently ,with interaction between MEC server and mobile user. 
For DDPG algorithm the number of penalty per episodes increases, but  becomes stable after episode index 
20. As shown in Table 5 and Figure 7 more number of users there is high optimised cost and which results 
in high computation demand  

Table 5 Average reward per episode for 5 number of users 

ALGORITHM User1 User 2 User3 User4  User5 

DDPG -15.94 -47.79 -125.17 -125.17 -125.17 

DQN -8.46 -13.08 -38.16 -38.16 -38.16 

 
Figure 7 Average reward per episode for 5 number of users 

It is observed that rewards received per episode have a direct relation with the average power per episode 
of each user. Since the penalty received are constant For DQN algorithm, the power consumed by each user 
is almost constant. In case of DDPG the number of rewards received were becoming stable after episode 
index 20,hence power consumption become stable after episode index 20. With more task arrival rate it is 
observed that DDPG perform less efficiently as compared to DQN as more power is consumed as number 
of users increases as shown in Table 6 and Figure8 . 

Table 6 Average power per episode for 5 number of users 

ALGORITHM User1 User 2 User3 User4  User5 

DDPG 0.246 0.756 1.262 1.262 1.262 

DQN 0.637 1.068 1.499 1.499 1.499 
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Figure 9 Average power per episode for 5 number of users 

 There is inverse relation between power and delay. Average delay per episode is minimum and less than 
150 for each episode index as shown in fig. There is decreases in average delay per episode. For DDPG 
with most the penalty received per episode there is more delay as compared to DQN algorithm as shown in 
Table 7 and figure 10. 

Table 7 Average delay per episode for 5 number of users 

ALGORITHM User1 User 2 User3 User4  User5 

DDPG 84.08 238.19 587.89 587.89 587.89 

DQN 3.44 29.39 246.32 246.32 246.32 

 

 
Figure10 Average delay per episode for 5 number of users 
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From the above observation we can say that DQN algorithm is a value based learning algorithm and tries 
to predict Q values for each state action pair in a single node, which learns the Q values from the defined 
policy. DDPG has a critic model that determines the Q value but uses the actor model to determines the 
action to take, hence DDPG algorithm tries to directly learn the policy. In continuous action space there is 
no meaningful way to produce finite set of actions. DQN algorithm are difficult to process continuous action 
space for more number of users, as the policy learning is very time consuming. Its output is deterministic 
and cannot solve random strategy efficiently. The degradation of the strategy can easily cause the algorithm 
to not give optimal solution.  For less number of user the policy learned by both the algorithm is not optimal 
as compared to more number of users. 
As the number of users n Figure 11 ,when the number of users is increasing there is a gradual increase in 
optimized cost when the number of users increases. The proposed DDPG gives more efficient results as 
compared to DQN with a minute difference in their performance. The optimized cost is almost constant 
when users are less than five, but there is a gradual increase in cost after the number of users increases. The 
reason for this is there is the limited capacity of the MEC server.   
 

 

 

 

 

 

 

 

 

Figure 11 Number of users with respect to optimised cost 

In Figure 12 , optimized cost with respect to data bites is considered, which increases as data  bites increase. 
As more energy is consumed with more delay for offloading, DDPG has more prominent results as 
compared to DQN. DQN and fully offload have almost similar behaviour when task bites size increases. 
Fully local curve increases more rapidly as compared to other methods, which depicts that partially 
offloading the data or fully offloading will be the appropriate solution to save energy consumption.   

 
Figure 12 Optimised cost with respect to task bites 
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Conclusion 
In this research paper, a data distributed approach has been implemented because MEC servers and local 
devices have computation capacity, which varies for every user. Using DDPG a policy is created which is 
trained with deep reinforcement learning to make offloading decisions, which is to either fully offload the 
data to a local device or MEC server or partially. This determination is done according to optimized cost, 
which is the sum of the minimized cost of energy and delay. The future scope of this approach is to create 
an advanced policy which can handle a huge amount of data in a lesser amount of time. An optimized 
algorithm can be proposed that can reduce the time for the iteration. 
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